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Loss of synchronization in lasers via parameter degradation

Carlos L. Pando L.
Instituto de Fisica, Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla, Puebla 72570, Mexico

~Received 13 February 1997!

We have found a general scaling law that describes the loss of forced synchronization in single-mode lasers.
The degrading parameters are the corresponding cavity frequencies and the atomic frequencies of the synchro-
nizing lasers. The scaling is general in the sense that it does not depend on the laser operation regime or
whether the laser belongs to classA, classB, or classC. @S1063-651X~98!00302-X#

PACS number~s!: 05.45.1b, 42.55.2f
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I. INTRODUCTION

Synchronization of systems whose dynamics is periodi
an important and well-known effect in physics, engineeri
and other disciplines@1,2#. Recently, synchronization o
chaos@3# has aroused much interest due to its potential
plications @2,4#. In this article we discuss a general scali
law that describes the way forced~unidirectional! synchroni-
zation is lost in single-mode lasers as the synchroniz
~master! and synchronized~slave! lasers differ more and
more in their cavity and atomic frequencies. These lasers
operate in periodic, chaotic, or steady-state regimes.

It is said that two dynamical systems synchronize if t
distance between their states converges to zero as time
to infinity @1,2#. This refers to periodic as well as chaot
synchronization. Synchronization of two laser systems
closely related to laser injection locking@5#. The latter has
received a great deal of attention since the invention of
laser@5#. Here the basic idea is to inject a weak monoch
matic continuous wave laser signal into the resonant ca
of another laser such that the natural lasing frequencie
both lasers are within a certain locking range. As a result,
lasing frequency of the laser undergoing the injection
comes equal to that of the injected laser signal.

Recently, within the context of chaotic synchronizatio
different ways to achieve synchronization in laser syste
have been carried out@6–11#. In Ref. @6# a model consisting
of three semiconductor waveguide lasers is conside
These lasers are coupled by means of their overlapping
nescent fields. Synchronization between two chao
Nd:YAG lasers~where YAG denotes yttrium aluminum ga
net! was achieved experimentally by the overlap of the i
racavity laser fields@7#. Synchronization between two cha
otic diode resonators has been experimentally carried ou
applying a generalization of the occasional proportio
feedback scheme@8#. On the other hand, two CO2 chaotic
lasers with saturable absorber were synchronized by inj
ing the radiation of the master CO2 laser into the saturable
absorber of the slave CO2 laser@9#. In Ref. @10# a regime of
recurrent synchronization is found in CO2 laser systems
which is further generalized for different dynamical system

Another particular case in a system of two lasers cons
in optically coupling one laser to the other while leaving o
of the lasers uncoupled@11#. This way of synchronization is
called forced~unidirectional! synchronization. This is pre
cisely the coupling scheme considered in this article. It m
571063-651X/98/57~3!/2725~8!/$15.00
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be underlined that, upon unidirectional synchronization
the lasers, the coupling term, which appears in the slave l
model, tends to zero regardless of the laser operation reg
Here the coupling term is proportional to the difference b
tween the electric fields of the coupled lasers.

For the sake of illustration, it is useful to compare t
classical Landau theory of second-order phase transit
@12# with the loss of synchronization as studied in this pap
In the classical Landau theory of second-order phase tra
tions, a system undergoes a transition from one phase~state!
to another one in a continuous way. Here the symmetry
one phase is higher than that of the other and it is precis
the symmetry of the system that changes discontinuousl
the transition point@12#. As a result, it is possible to find tha
the degree of orderingh, a quantity that depends on the sta
of the system, depends, as a power law, on the differe
between the current value of the external parameter and
critical value, where the valueh50 corresponds to the mos
symmetric phase@12#. Along similar lines we can conside
the loss of unidirectional synchronization. The state of~per-
fect! synchronization is characterized by the symmetry re
tion Fi

(master)5Fi
(slave), whereFi

(master,slave)stand for the vari-
ables of the master and slave lasers, respectively. As lon
the corresponding frequencies of the master and slave la
are different, this symmetry is broken. Here the degree
orderingh is a suitable distance between the states of b
lasers, while the difference between the external param
and its critical value is given by a suitable distance betwe
the frequencies of both lasers in parameter space. Heh
depends, as a power law, on the distance between the
quencies of the lasers, as we will see. For lasers in a ste
state, we demonstrate this property analytically and num
cally, while for lasers in a time-dependent state, this
shown numerically. Here alsoh50 corresponds to the sym
metric state, i.e., the state of~perfect! synchronization.

In contrast, there are interesting studies dealing with l
of synchronization in blowout bifurcations@13#. Here, as-
suming always that the parameters of the synchronizing
tems are the same, it was shown that there is an interva
the coupling constant~s! where synchronization is lost@13#.
At the boundary of this interval, synchronous chaotic beh
ior is interrupted by bursts of desynchronized motion@13#. In
contrast to Ref.@13#, the system that we study here can
considered as made of two stages. First, both the master
slave lasers reach the state of~perfect! synchronization since
the ~unidirectional! coupling constant has been made lar
2725 © 1998 The American Physical Society
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2726 57CARLOS L. PANDO L.
enough. At this stage, all the parameters of both lasers
the same, with the exception of the coupling that affects o
the slave laser. Second, once~perfect! synchronization is
reached, we allow a progressive smooth variation of the
rameters of the lasers. In the present case, we change
cavity frequency, the atomic frequency, or both frequenc
of the master laser, leaving those of the slave laser
changed. We can change the frequencies of the slave
leaving those of the master laser unchanged. That yields
same result.
Finally, it is worth mentioning that for chaotic maps an
flows, Ref.@14# studies the degradation~loss! of synchroni-
zation as the parameters of the synchronizing systems
verge. This study@14# used the scheme of Pecora and Carr
@3#, which is impossible to implement in lasers to reach s
chronization via optical coupling@7#. In Ref. @14# mutual
correlation dimensions were found to scale with the diff
ence between corresponding parameters of the synchron
systems. In this study, no comment was made regarding
universality of the scaling exponents for a given mutual c
relation dimension@14#. In contrast, our model is based o
the forced synchronization scheme, which can be imp
mented naturally in laser systems via all-optical metho
The power-law scaling found in the extended Lorenz mo
is general for all the laser operation regimes and all the
ferent relaxation rates of this laser model. The latter defi
the different types of lasers.
This article is divided as follows. In Sec. II we study the lo
of synchronization in unidirectionally coupled Hopf oscill
tors. In Sec. III we describe the unidirectionally coupled e
tended Lorenz model. In Sec. IV we consider the loss
synchronization in the extended Lorenz model. In Sec. V
give the conclusions.

II. LOSS OF SYNCHRONIZATION
IN UNIDIRECTIONALLY COUPLED

HOPF OSCILLATORS

Before considering the loss of synchronization in the
tended Lorenz model, we will present a simple model t
illustrates how the above-mentioned power-law arises.
model is given by

dZk

dt
5Zk~2uZku21ak!1Gk~Zl2Zk!. ~1!

Here Zk and Zl are the complex amplitudes of the Ho
oscillators, wherek5m,s andl 5s,m, respectively.m ands
stand for the master and slave oscillators, respectively. H
without loss of generality,am511 ivm and as511m
1 ivs . To consider only unidirectional coupling, we need
set Gs[G and Gm50. Using the new variablesZm
5rm exp(ium) and Zs5r exp(iu), we obtain for the slave
oscillator

dr

dt
5r~11m2r2!1G~rm cosx2r!,

dx

dt
5d2G

rm

r
sin x, ~2!
re
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wherex[um2us andd5vm2vs . The master oscillatorZm
describes a regular oscillation withrm51 and dum /dt
5vm . The onset of this regular oscillation occurs as a res
of a supercritical Hopf bifurcation. The locking range is d
fined by the equationdx/dt50 @2,5#. Locking between the
master and slave oscillators is lost through a saddle-n
bifurcation @2#. As a result, within the locking range, th
~instantaneous! frequency of the slave oscillator becomes t
same as that of the masterdu/dt5vm . Within the locking
rangerm andr will differ from each other unlessd50 and
m50.

Let us first consider the casem50 andd!G. From Eq.
~2! we obtain

sin x5
d

G
r,

cosx'11
1

2 S d

G
r D 2

1O~r4!.0. ~3!

Next, in order to find the steady-state solution forr, we
insert in Eq.~2! the approximate expression for cosx and
expandr in series ofe[ 1

2 (d/G)2!1. As a result, we obtain

r511
G

21G
e1

G2~42G!

~21G!3 e21O~e3!. ~4!

Therefore, asd undergoes small changes within the full loc
ing range, the power-law scaling forr is given by

lnur2rmu'2 lnudu1C, ~5!

whereC is a constant. Thus the scaling exponent is given
n52. Equation~5! describes the loss of forced synchroniz
tion in the coupled Hopf oscillators.

Now let us consider the casem!1 andd50. Here the
locking condition is always satisfied andx50. The equation
for r is given by

r511
1

21G
m1O~m2!. ~6!

Thus, asm undergoes small changes,r2rm;m and the ex-
ponent isn51. We will show below that the exponentsn
51,2 considered above are related as well to the scalin
amplitudes, i.e., bounded variables of the extended Lor
model when the corresponding atomic and cavity frequen
of the lasers differ from each other.

We underline that Eq.~1! can be derived from the ex
tended Lorenz model upon adiabatic elimination of t
atomic variables and neglecting the frequency pulling a
pushing coefficients@15#. The Hopf oscillator model de-
scribes the transversally and longitudinally monomo
He-Ne laser oscillating at 3.39mm @16#.

III. THE MODEL OF THE LASER SYSTEM

We will assume that the laser systems are coupled s
larly to the Hopf oscillators, i.e., unidirectionally. This wa
of coupling in lasers can be realized with all-optical metho
@5,7,11,17#. When ~perfect! synchronization between bot
master and slave lasers is reached, the synchronization~cou-
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57 2727LOSS OF SYNCHRONIZATION IN LASERS VIA . . .
pling! term vanishes and the equations of both lasers bec
the same.

We now introduce the model for the laser system wher
finite detuning between the atomic transition frequencyva of
the resonant levels and the cavity frequencyvc is present.
The model is known as the extended Lorenz model@18,19#.
It is based upon the usual field-matter equations for two-le
atoms in a resonant cavity@20#. The slave laser system i
described by the set of equations

dE

dt
52kE1 i ~V2vc!E2gP1Gk~Em2E!,

dP

dt
52g'P1 i ~V2va!P2gEN,

dN

dt
5g~PE* 1EP* !2gN1gQ, ~7!

whereE is the complex amplitude of the electric field,P is
the polarization, andN is the population difference of th
upper and lower resonant energy levels.Em is the amplitude
of the electric field of the master laser.g is the field-matter
coupling constant~a real number! andV is the frequency of
the laser reference frame.Q is the incoherent pump and th
relaxation rate ofN is written asg. A similar equation holds
for the master laser, except thatG50 and the atomic transi
tion frequencyva

m of the resonant levels and the cavity fr
quencyvc

m can be different from those of the slave laser.
If we write the electric field and polarization of the slav

and master lasers in polar coordinatesE5r exp(iu), P
5m exp(ic), Em5rm exp(ium), and Pm5mm exp(icm), the
slave laser equations become

dr

dt
52br2Abm cosd1bG~rm cosx2r!,

dm

dt
52m2AbrN cosd,

dd

dt
5D1Ab Fmr 1N

r

mGsin d1bG
rm

r
sin x,

dN

dt
54Abmr cosd2gN1gQ,

dx

dt
5

vc2vc
m

g'

1AbFmm

rm
sin dm2

m

r
sin dG2bG

rm

r
sin x.

~8!

Hereb5k/g' , D5(va2vc)/g' , andd5u2c. t, r, and
m have been renormalized ast→g't, r→gr/Akg', and
m→g2m/kg' , respectively.N and Q are renormalized in
the same way asm. The subscript or superscriptm labels
variables or parameters of the master laser. The phaseu in-
fluences the dynamics of the slave laser model via the e
tion for x[um2u. The same equation holds for the mas
laser, except that thereG50 and the phaseum does not
influence the dynamics of the master laser model.
e

a

el

a-
r

When G50, the master and slave lasers are uncoup
The dynamics of these systems has been studied extens
in previous articles@18,19#. In this case, at a steady sta
u̇(t)50 and the frequencyV0 of the reference frame is
given by the well-known relation

V05
vcg'1vak

g'1k
. ~9!

For the sake of definition, we have setV equal to the lasing
frequency at a steady stateV0 in both the master and slav
lasers. We define Dm5(va

m2vc
m)/g' and D5(va

2vc)/g' as the detunings in each laser system. If in t
extended Lorenz model the relaxation rates of the ato
variables differ substantially, particular cases can be deri
from this model that have been used to describe impor
lasers such as CO2, Nd:YAG, and He-Ne lasers@20#.

IV. DEGRADATION OF SYNCHRONIZATION IN LASERS
WITH DIFFERENT DYNAMICAL REGIMES

A. Steady-state operation

By increasing the pumpQ from a state withrm50, the
extended Lorenz model undergoes eventually a transcri
bifurcation and reach a steady state with nonzero amplit
rmÞ0. When the instantaneous laser frequenciesdum /dt
anddu/dt are the same, this defines, as before, the lock
range for lasers at a steady state, i.e.,dx/dt50. Here we
consider two cases:~a! the case when the cavity frequenci
of both lasers are the same, i.e.,vc5vc

m , and ~b! the case
when the atomic frequencies of both lasers are the same,
va5va

m .
When vc5vc

m , we obtain, from the locking condition
dx/dt50,

bG
rm

r
sin~x!5AbFmm

rm
sin~dm!2

m

r
sin~d!G . ~10!

Subtracting the equation fordd/dt from that forddm /dt in
the laser model and making use of Eq.~10! yields

AbFNm

rm

mm
sin~dm!2N

r

m
sin~d!G1e50, ~11!

wheree5va
m2va , ueu!1, is the perturbation parameter. I

a steady state, it is possible to represent the difference
tween the variables, i.e., amplitudes of the master and s
lasers, as a Taylor expansion in terms ofe over a range of
small detuningsd. Therefore, the linear term coefficient ofe
in these Taylor expansions is in general different from z
in order to satisfy Eq.~11! and as a result the scaling exp
nent is one.

On the other hand, whenva5va
m , we obtain from the

locking conditiondx/dt50

bG
rm

r
sin~x!5AbFmm

rm
sin~dm!2

m

r
sin~d!G1e, ~12!

where this timee5vc2vc
m , ueu!1. It is easy to check tha

the equalitydm5d holds. This is shown by using the equ
tion for dm/dt50 and the equation
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2728 57CARLOS L. PANDO L.
AbFNm

rm

mm
sin~dm!2N

r

m
sin~d!G50, ~13!

which was obtained similarly to Eq.~11!. By representing
the other variables of the slave laser as a Taylor expansio
terms ofe and keeping the linear terms in Eq.~8!, we obtain

~11G!br11Ab cos~d!m11bGrm@12cos~x!#e2150,

AbNm cos~d!r11m11Abrm cos~d!N150,

4Abmm cos~d!r114Abrm cos~d!m12gN150, ~14!

wheree has been factored andr1 , m1 , andN1 are the linear
term coefficients in the Taylor expansion. Sincee is the per-
turbation parameter, from Eq.~12! it follows that x;e.
Therefore, in Eq.~14! the factor 12cosx;x2;e2. As a re-
sult, the linear equation for the coefficientsr1 , m1 , andN1
becomes homogeneous since terms of ordere are not presen
in this equation. Since the determinant of this linear equa
is given by

24b2rm
2 cos2~dm!@11G1Nm cos2~dm!#

2gb@11G2Nm cos2~dm!#, ~15!

which is in general different from zero, the coefficientsr1 ,
m1 , andN1 are zero. If the Taylor expansion in Eq.~8! takes
into account quadratic terms;e2, the resulting linear equa
tion for the coefficients of the quadratic terms will be inh
mogeneous due precisely to the factor 12cosx. That is why
in the caseva5va

m the scaling exponent is 2.
Next we will verify numerically the power-law scalin

found above. The steady state is defined by the set of pa
etersb52.0, g50.25,Q52.0, andD50.6. The control pa-
rameter isDm . In Fig. 1 we can observe the scaling of th
intensity difference between the master and slave laseI m

2I with respect to the mismatchDm2D. I m5rm
2 and I

5r2. The solid line stands for the caseva
m5va where only

the cavity frequencyvc
m changes. On the other hand, th

dashed line represents the case withvc
m5vc and therefore

FIG. 1. Plot of log10uI m2I u versus log10uDm2Du. The solid line
stands for the caseva

m5va , while the dashed line stands for th
casevc

m5vc , Here the laser operates at steady state with a c
pling constantG52.0.
in

n

m-

only va
m changes. In the caseva

m5va , the numerical calcu-
lation of the scaling exponent givesn52.060.01, while in
the casevc

m5vc it is given byn51.060.01. The scaling for
the difference between other corresponding variables of
master and slave lasers, such as that of the populationsNm
2N or that of the laser intensity of the electric fielduEm
2Eu2, shows the same scaling exponents ofI m2I .

B. Class-C laser operation

When the solution in the Lorenz model is time depende
the locking conditiondx/dt50 no longer holds since the
parameters of the master and slave lasers are different. H
ever, the same scaling law discussed above is found her
suitable averages of the difference between the variables,
amplitudes of the master and slave lasers, as we will
below. In a class-C laser, the variables of the system th
take into account the population inversion and polarizat
play an important role in the dynamics of the syste
@20,18,19#. For the parametersb52.0, g50.25, and Q
515.0, the dynamics and bifurcations of this system ha
been extensively studied in Refs.@18,19#. Here we set the
detuningD50.6. As before, the control parameter isDm .
For these parameters the master oscillator describes ch
motion @19#.

Before we proceed to describe loss of synchronizat
when the dynamics is chaotic, we will consider the case
~perfect! chaotic synchronization between the master a
slave lasers. When the frequencies of both lasers are
same (va,c

m 5va,c), in order to reach synchronization it i
required that the tendency for exponential separation of
close trajectories, one of which belongs to the master la
and the other to the slave laser, must be compensated b
effect of coupling between the lasers. Mathematically, t
can be expressed by saying that the largest conditio
Lyapunov exponent must be negative in order to reach c
otic synchronization@3,21#. In Fig. 2~a! we can observe the
two largest conditional Lyapunov exponents as the coup
constantG increases. AtGc'0.25 the master and slave lase
synchronize and as a result the maximum conditio
Lyapunov exponent is negative. Another useful quantity
study synchronization is the distance between the state
both lasers. This can be observed in Fig. 2~b!, where the
dependence of log10u12mu and log10 s versus the coupling
constantG is plotted.m is the slope in the linear regressio
of the set of points (I m ,I ) and s is its deviation. Whenu1
2mu→0 ands→0 ~perfect! synchronization sets in, i.e.,
straight line with slope one appears in the plane (I m ,I ). Both
log10u12mu and log10 s show a bound of order213 due to
roundoff errors forG.Gc'0.25. Once the regime of~per-
fect! chaotic synchronization is reached for a given set
parameters, we start to changevc

m2vc , va
m2va , or both.

We consider now the caseva
m5va . In Fig. 3~a! we can

observe the scaling of log10u12mu as a function of
log10uDm2Du5 log10uvc

m2vcu for different values of the
coupling constantG such thatG.Gc;0.25. In this figure,
when log10uDm2Du;26 or less, scaling is not observed du
again to roundoff errors. A related scaling can be observe
Fig. 3~b! for the plot of log10 s versus log10uDm2Du
5 log10uvc

m2vcu. m and s are calculated from the linea
regression of the set of points (I m ,I ). Notice thats accounts

u-
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57 2729LOSS OF SYNCHRONIZATION IN LASERS VIA . . .
for a statistical difference with respect to some optimal
ting straight line with slopem. This suggests that we can fin
the same scaling in log10u^I m2I &u and log10 s(I m2I ) versus
log10uDm2Du where^I m2I & ands(I m2I ) stand for the sta-
tistical average and standard deviation, respectively, of
set of pointsI m2I . This is confirmed by Figs. 4~a! and 4~b!
for different values of the coupling constantG, for which G
.Gc . We underline that other averages such those
F(rm ,mm ,dm ,Nm)2F(r,m,d,N), where F is a suitable
function, obey the same scaling law.

In Figs. 3 and 4 we have studied the caseva
m5va for

which the scaling exponent isn52.060.01. In contrast, the
casevc

m5vc has as scaling exponentn51.060.01. This is
shown in Fig. 5 for log10 s versus log10uDm2Du, wheres is
the deviation of the corresponding slopem in the linear re-
gression of the set of points (I m ,I ). A similar picture is
obtained for the scaling of log10u12mu. The solid and
dashed lines correspond to different coupling constantsG for
which G.Gc .

Here we give a qualitative explanation to understand w
the amplitude scaling in the steady-state case still persist
the chaotic regime or, as we will see, in the periodic regim
One must consider two facts. First, the time average fr
time derivatives of bounded quantities, i.e., amplitudes, s

FIG. 2. Here we consider the case withva
m5va andvc

m5vc for
the class-C laser studied in the text.~a! The first two conditional
Lyapunov exponents versus the coupling constantG. ~b! log10u1
2mu and log10s versus the coupling constantG. Herem ands are
the slope and its deviation, respectively, in the linear regressio
the set of points (I m ,I ). Here and below the solid and dashed lin
correspond to the first and second plot, respectively.
-

e

f

y
in
.

h

as r, is zero. Second, the time average of the differen
between the corresponding amplitudes of the master
slave lasers must have a dependence on the frequencies
match that is the same as that of the steady-state case, as
asx is bounded. As a result, the scaling of the difference
the corresponding averaged amplitudes gives exponenn
51,2 as explained above.

C. Class-B and class-A laser operation

The parameters of the class-C laser model considered
above have been used to describe the dynamics of the3
far-infrared single-mode laser@18#. Class-B lasers are sys-
tems such as the CO2 and Nd:YAG lasers. Models for thes
lasers have been derived as particular cases from the
tended Lorenz model@20#. These models are obtained b
eliminating adiabatically the atomic polarizationP. For
class-Alasers such as the He-Ne lasers, the polarizationP
and inversionN can be adiabatically eliminated in the e
tended Lorenz model@20#.

The class-Blaser model considered here has the set
parametersb50.0578,g50.0084,D50.6, and a modulated
external pumpQ51.43@1.01m sin(vt)#. For m50.25 and
v51023 ~which corresponds to 400 kHz!, the laser shows
chaotic behavior. For the caseva

m2va50, the scaling expo-
nent is given byn52.060.01. On the other hand, for th

of

FIG. 3. Here the caseva
m5va is considered. The paramete

correspond to the class-C laser. ~a! Plot of log10u12mu versus
log10uDm2Du for different coupling constantsG50.5, 1.0, 1.5, and
2.0.~b! Same as~a!, but for the corresponding deviations. Here the
slopem and its deviations are calculated as in Fig. 2~b!.
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2730 57CARLOS L. PANDO L.
casevc
m2vc50, n51.060.01. A class-B laser with modu-

lated losses shows the same scaling laws as the prev
cases. Pump-modulated and loss-modulated lasers have
studied theoretically and experimentally@5,22#.

For the class-A laser model considered here, we have ch
sen the parametersb50.0578, g50.2, andQ51.43@1.0
1m sin(vt)#. Herem50.1 andv50.1. Under pump modu
lation, the oscillations in this system are only periodic sin
the phase space of the system becomes two dimensiona
both casesva

m5va and vc
m5vc , the same scaling expo

nentsn found previously hold also here.

D. Simultaneous variation of the cavity frequency
and atomic frequency

In the previous subsections we have considered stri
only two cases, namely,va

m5va and vc
m5vc . Different

laser operation regimes, which belong to the same case,
the same scaling exponent. Now we will approach the~per-
fect! synchronized state by reducing simultaneously the fin
detuningsva

m2vaÞ0 and vc
m2vcÞ0 towards zero. This

can be carried out by introducing the variablesc andd:

va
m2va5d sin c,

FIG. 4. Here the parameters are the same as in Fig. 3.~a! Plot of
log10u^I m2I &u versus log10uDm2Du. ~b! Plot of log10s(I m2I ) ver-
sus log10uDm2Du. ^I m2I & ands(I m2I ) are the mean and standa
deviations, respectively, of the set of dataI m2I . The solid line
corresponds toG51.0, while the dashed line stands forG52.0.
us
een

-

e
For

ly

ve

e

vc
m2vc5d cosc. ~16!

The corresponding scaling exponents are found by chan
d while keepingc constant. With this notation, the case
va

m2va50 and vc
m2vc50 correspond toc50,p and c

5p/2,3p/2, respectively.
The scaling exponentsn have been obtained fo

log10u^I m2I &u with respect tod. For the steady-state cas
log10u^I m2I &u degenerates into log10uI m2I u.

Here the parameters of the steady state in the Lor
model are the same as that of Sec. IV A. In Fig. 6 we see
the scaling exponent isn51.060.01 everywhere with the
exception of the vicinity ofc50 or p. In Fig. 7~a! we show
the slopesn corresponding to values ofc for which c→0. In
this figure, lines~1! and~2! stand forG51.0 and 2.0, respec
tively, both for c.0, while lines ~3! and ~4! stand forG
51.0 and 2.0, respectively, both forc,0. There is no sym-
metry between the positive and negative values ofc. How-
ever, as observed in Fig. 7~b! in this vicinity of c, the devia-
tion s of the slopen is relatively large. This means that in a
interval of this vicinity, we cannot characterize the depe
dence of log10uI m2I u on the considered values ofd as

FIG. 5. Here the casevc
m5vc is considered. The paramete

correspond to those of the class-C laser. Plot of log10s versus
log10uDm2Du. The solid line stands forG51.0 and the dashed line
for G51.5. s is the deviation of the best-fitting slope in the line
regression of the set of points (I m ,I ).

FIG. 6. Plot of the scaling coefficientn versus the anglec ~de-
fined in the text!. This plot corresponds to the steady-state case
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a certain straight line since consideration of quadratic te
of d is necessary. Here Eq.~11! is replaced by

AbFNm

rm

mm
sin~dm!2N

r

m
sin~d!G1d sin~c!50.

~17!

The difference between the corresponding variables of
master and slave lasers can be expressed as a Taylor e
sion in terms ofd. By the same arguments given in Se

FIG. 7. ~a! Plot of the slope coefficientn versus log10ucu for the
steady-state case. Lines~1! and~2! correspond toc.0 and lines~3!
and ~4! to c,0. Lines ~1! and ~3! are calculated forG51.0 and
lines ~2! and~4! for G52.0. ~b! Same as~a!, but for the deviations
of the slopen.
s

e
an-

.

IV A, the linear term coefficient in these Taylor expansio
is in general different from zero as long ascÞ0. That is, as
c→0 and for small enough values ofd, the linear term will
be the relevant term. However, asd becomes larger thanc,
the quadratic term becomes more and more relevant. Th
precisely what we see in Fig. 7, wheren and s have been
calculated for 1026<d<1022. Within this interval ofd and
for intermediate values ofc the dependence of log10uI m2I u
on d is neither a straight line~n51 ands50! nor a para-
bolic curve~n52 ands50! since both terms are relevan
This is the reason for the relative large valuess in this in-
terval of n.

A similar situation takes place when the trajectory of t
laser is chaotic. Here the parameters are the same as tho
Sec. IV B. Here the picture is qualitatively the same as t
of Figs. 6, 7~a!, and 7~b!.

V. CONCLUSIONS

In this article we have studied the progressive loss
~perfect! synchronization as the frequencies of the mas
and slave lasers differ from each other. We have found
the dependence of the distance or average distance bet
the corresponding amplitudes of both lasers with respect
small difference in the frequencies between the lasers
ruled by a scaling law. The scaling exponent is generica
n51.0; however, the scaling exponent becomesn52.0 in
the caseva

m2va50. The generality of the scaling exponen
for coupled single-mode lasers, which are described by
extended Lorenz model, refers to the fact that the sca
exponents are the same regardless of the type of laser~class
A, classB, or classC! and the laser operation regime~steady
state, periodic, or chaotic!.

It would be interesting to study further the loss of sy
chronization via parameter degradation in other import
laser models such as those of multimode semiconductor
fiber lasers. The extension of these studies to spatially
tended laser systems may also be of interest due to the
portance in the control of the spatial laser characteristics
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